不锈耐酸钢
。在空气中能抵搞腐蚀的叫不锈钢;在各种侵蚀性强烈的介质中能抵搞腐蚀作用的钢叫耐酸钢。不锈钢并不一定耐酸,而耐酸钢一般却有良好的不锈性能。这类钢主要含铬、镍等合金元素,有和还含有少量的钼、钒、铜、锰、氮或其他元素。铬含量有的高达25%左右(含铬量在13%以下的钢,只有在腐蚀不强烈的情况下才是耐蚀的),镍含量高达20%左右。这类钢主要用于制造化工设备、医疗器械、食品工业设备以及其他要求不锈的器件等。历史
不锈钢的发明是冶金史上的一项重大成就。20世纪初,吉耶(L.B.Guillet)于1904~1906年和波特万(A.M.Portevin)于1909~1911年在法国;吉森(W.Giesen)于1907~1909年在英国发现了铁-铬和铁-铬-镍合金的耐腐蚀性能。蒙纳尔茨(P.Monnartz)于1908~1911年在德国提出了不锈性和钝化理论的许多观点。工业用不锈钢的:含Cr12~13%的马氏体不锈钢是布里尔利(H.Brearley)1912~1913年在英国;含Cr14~16%,C0.07~0.15%的铁素体不锈钢是丹齐曾 (C.Dantsizen)1911~1914年在美国;含C<1%,Cr15~40%,Ni<20%的奥氏体不锈钢是毛雷尔 (E.Maurer)和施特劳斯(B.Strauss)1912~1914年在德国。在此基础上随后又发展了的“18-8”不锈钢(C~0.1%,Cr~18%,Ni~8%)。在马氏体、铁素体和奥氏体三大类型不锈钢相继出现后,30年代又发明了奥氏体-铁素体双相不锈钢。40年代至50年代,马氏体和半奥氏体沉淀硬化不锈钢和节约镍的Cr-Mn-Ni-N等不锈钢以及含碳量低于 0.03%的超低碳不锈钢也开始生产。60年代以后又出现了马氏体时效不锈钢,TRIP(transformation inducedplasticity,见形变热处理)不锈钢和碳,氮总量低于150ppm的铁素体不锈钢。70年代末,世界不锈钢年产量超过1000万吨,一些不锈钢产量约占其总钢产量的1%左右。中国于1952年开始大量试制和生产不锈钢,至70年代已有45个定型牌号。
合金元素的作用
不锈钢重要的技术要求是耐蚀性,合适的力学性能,良好的冷、热加工和焊接等工艺性能。铬是不锈钢获得耐蚀性的基本元素。当钢中含铬量达到12%左右时,钢在氧化性介质中的耐蚀性发生突变性的上升。此时钢的表面形成一层极薄而致密的铬的氧化膜,阻止金属基体被继续侵蚀(见金属腐蚀)。除铬外,不锈钢中还含其他元素,有些是作为主要成分加入的,有的则是残留的杂质;其影响见下表
类别
不锈耐酸钢种类繁多,特性各异,按组织分类及其特性如下:
铁素体不锈钢
以铬为主要合金元素,含Cr12~30%,C≤0.25%;有些钢种还含Mo、Ti等元素,如1Cr17,1Cr25,0Cr18Mo2Ti等。一般呈单相铁素体或半铁素体组织。由于此类钢是单相组织,没有相变,因而无法通过热处理使之强化。此类钢热导率较大而热胀系数较小,抗氧化性强,而且耐蚀性随钢中铬量增加而提高,故多用于制造耐大气、蒸汽、水及氧化性酸和有机酸腐蚀的零部件和耐热部件。它们的耐氯化物应力腐蚀的性能优于一般Cr-Ni奥氏体钢,但对晶间腐蚀比较敏感。当钢中增加含硫量(S0.35%)时,还具有良好的易切削性能。 如果钢中含铬量≥15%,铁素体不锈钢的韧性-脆性转变温度会升到室温以上,而且在≥900℃加热时会出现晶粒长大而导致出现脆性。在550~750℃和 475℃长期停留也会出现σ相脆性和 475℃脆性。但含碳、氮总量低于150ppm的高铬铁素体不锈钢如Cr18Mo2,Cr26Mo1等,基本上不产生室温脆性。如果作为焊接部件使用,焊接过程要采取防止增加碳、氮的措施才能获得满意性能。
奥氏体不锈钢
钢中含Cr约18%、Ni8~10%、C约0.1%时,具有稳定的奥氏体组织。奥氏体铬镍不锈钢包括的“18-8”钢和在此基础上增加Cr、Ni含量并加入Mo、Cu、Si、Nb、Ti等元素发展起来的高Cr-Ni系钢。奥氏体组织的钢是无磁性而且具有高韧性和塑性,但强度较低,而且不能通过相变使之强化,仅能通过冷加工进行强化。如果把S、Ca、Se、Te等元素加入钢中,它便具有良好的易切削性。此类钢除耐氧化性酸介质腐蚀外,还能耐硫酸、磷酸以及甲酸、醋酸、尿素等的腐蚀。不锈钢中的含碳如低于0.03%或含Ti、Nb,就可以提高其耐晶间腐蚀性能。高硅的奥氏体不锈钢对浓硝酸有良好的耐蚀性。为了节约价格较高的Ni并使钢仍具奥氏体组织,以Mn、N代Ni,发展出了Cr-Mn-Ni-N和Cr-Mn-N不锈钢。它们除耐氧化性酸、尿素、醋酸等介质外,还具有屈服强度远高于Cr-Ni奥氏